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The three-dimensional transport equation with applications 
to energy deposition and reflection 
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Nuclear Engineering Department, Queen Mary College, University of London, Mile End 
Road, London E l  4NS, UK 

Received 9 July 1981 

Abstract. A detailed investigation of the energy deposition in, and surface reflection from, 
an infinite half-space has been made. Two types of source are considered: the first is a line 
source embedded in the medium perpendicular to the surface and the second is an incident 
pencil, of arbitrary direction, incident at a point. The resulting problem involves three 
dimensions in space and therefore requires description by a transport equation in the 
appropriate coordinates. 

The physical problem considered is that of a beam of incident ions or a line ion source in 
the medium. Only the fate of the foreign incident ions is considered and no attempt is made 
to follow the recoil atoms generated. Progress is made in the analytical solution of the 
problem by assuming an energy-independent mean free path and the transport approxima- 
tion for the scattering kernel. The Wiener-Hopf method is used together with Fourier 
transforms for transverse directions. Considerable success has been achieved in obtaining 
exact solutions for some special limiting cases, and the numerical results which emerge are 
tabulated. 

1. Introduction 

The distribution of radiation damage and energy deposition in materials due to spatially 
non-uniform sources is of considerable interest. A simple, yet important, example is 
the case of a pencil of radiation incident on a surface. As the direction of the pencil is 
altered the distribution of radiation within the medium and the scattered distribution 
vary. In astrophysics this is known as the searchlight problem (Rybicki 1971). Similar 
problems also arise in neutron transport, where Elliott (1952, 1955) has studied the 
distribution of neutrons arising from a point isotropic source on the surface of a 
half-space. Extensions of this type of problem in the field of radiation damage have 
been made by Khalafi and Williams (1980), who consider the energy deposited in an 
infinite medium by an anisotropic point source. 

The purpose of the present paper is to examine the energy deposition in a half-space 
of moderating material arising from a pencil source and also that due to a line source 
embedded in the medium perpendicular to the surface. Because of the difficulty of 
dealing with such problems both numerically and analytically, we shall make a number 
of assumptions, all of which are physically reasonable, which will enable an analytical 
solution to be obtained. The Wiener-Hopf method is used and enables the exact 
boundary conditions of the problem to be included. This has the advantage of 
eliminating the errors inherent in the conventional infinite-medium approximation. 
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966 M M  R Williams 

Explicit expressions are obtained for the emerging angular distribution, and for the 
energy deposited, as a function of position in the three orthogonal directions. Various 
difficulties encountered in the Fourier inversions are discussed. 

2. Three-dimensional transport equation 

The structure of the three-dimensional transport equation describing the motion of 
foreign particles in a host medium can be found in several references (Davison 1957, 
Case and Zweifel 1967). However, for consistency, we refer the reader to Williams 
(1979a, b). Then, if @(E, a, x ,  y, z )  is the collision density of particles of energy E 
travelling in the direction denoted by the unit vector at position x ,  y ,  t , 0 is given by 

In this equation, we have assumed that the cross section in the centre of mass can be 
written as a separable function of E and e,, namely 

where C,, = l / A t r  is the transport cross section referred to CM coordinates. 8,(E/E') is 
the scattering angle in the CM system and is a known function of E/E'. Similarly, 
g(E/E') is the scattering angle in the laboratory system. S(E, Cl,  x ,  y ,  t )  is a source term 
to be specified. In addition, there will be a boundary condition on any surface. For the 
sake of simplicity, we shall consider a half-space z > 0 and hence we require a boundary 
condition of the form 

where n is the unit normal to the surface. 
, It is frequently more convenient to work in terms of the lethargy variable u = 
ln(Eo/E) where Eo is a convenient reference energy. In that case, the equation for @ 
now becomes 

1 
du' eU""f(8(u -U')) d n '  S(pg - g ( u  -U')) - - 

2 4 1 - a )  I:, 
2 

x @(U', a', x, y, z ) +  (E --- 1-a e".-")@(u, a, x, Y ,  z ) ]  [ 

where q = ln ( l /a ) .  
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In this work, two problems will be considered. They are 
(1) the searchlight problem, in which 

where = a ( p ,  9) and 
(2) the line source, in which 

To proceed with the solution of equation (4), we make the assumption that the cross 
section Z,, is independent of energy, and scale all lengths in terms of it. Then the 
transport approximation to the scattering kernel is applied, in which the delta function 
is approximated as 

S(po* -g)=4(1-g>+gS(CLo* -1). (9) 

This approximation has been studied in depth and found to give excellent results over a 
wide range of mass numbers (Williams 1978). 

Using these approximations in equation (4) and taking Laplace transforms in 
lethargy, equation (4) reduces to 

(a * V + l)&, a, X, y ,  Z) = dn’ 6 ( s ,  a’, X, y ,  Z) + S(S, a, X, y ,  2) (10) 4tr 

where x, y and z are now scaled by A t r / ( l  -A(s)) with 

+-e -- e+> (11) 
l 4  

A(S) = - J duf(u)(g(u) 
+ f f  

l-CY 0 l - f f  l - f f  

, C ( S ) = ~ ? ( S ) / ( ~  -A(s)) (12) 

.-ab 

&(s, a, x, y. z )  = du e-su(D(u, a, x, y, z). (14) Jo 
Equation (10) is now in the ‘one-speed’ form and is amenable to solution by a variety 

of techniques. It is this equation that Khalafi and Williams (1980), Elliott (1952,1955) 
and Rybicki (1971) have solved for various boundary conditions. 

3. Solution of the three-dimensional transport equation 

We introduce the two-dimensional Fourier transform 
a0 -ab 

&s, a, kl, kz, z )  = I dx I dy exp(-iklx -ikzy)&(s, fk, x, y, z )  (15) 
--ab --ab 
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whence equation (10) becomes 

(iSZxkl+iSZyk2+Cl,--+l dz ” &(s, CL, k l ,  k2, z )  

(16) 
C =-I da’&(s,  a’, k l ,  k2, z )+$ (s ,  a, k l ,  k l ,  z ) .  47T 

In the searchlight problem s’ = 0 and 

a(* - *O) n . R > O  (17) S(P -Po) &(s, n, k i ,  k2,O) = 
CLO 

whereas for the line source &(s, a, x, y ,  0) = 0 for n - a> 0 and 

s’(s, 42, k l ,  k2,O) = s0/&7. (18) 

3.1. The line source problem 

Noting that SZ, = (1 - 
be written as 

cos 9, fly = (1 - - F * ) ~ ’ ~  sin I/J and 0, = M, equation (16) can 

+ 1 + i ( l  - p 2 ) 1 ’ 2 ( k 1  cos ++ k2  sin +) &s, a, k l ,  k2, z )  

C so = - 1 d a ’  &(s, a’, kl,  k2, z )  f --. 
47T 47T 

(19) 

Defining the total collision density 60 as 

&ob ,  ki ,  k2, Z )  =- d a  &, a, k i ,  k 2 , z )  (20) 27T ‘I 
equation (19) may readily be converted to the following integral equation for &o: 

&(s, k l ,  k2, dz’ K ( / z  - z ’ / ;  k)(c&o(s, k i ,  k2, z’)+Soj (21) 

where k = ( k :  + k:)”2 and 

The angular distribution at the surface can be written as 

for p < O  and all (I, where f = (1 -p2 )1 ’2 (k l  cos ++ k2 sin +). Thus, if &o can be 
obtained, the emergent distribution is available. 

The basic problem now is to solve equation (21). This can be done by direct 
application of Fourier techniques; however, we prefer to adopt an alternative method 
based upon a device introduced by the author some years ago (Williams 1968). In this 
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method, we introduce a fictitious function Q(v, z )  such that 
1 

&o( . . . z )  = I-, d v  W v ,  z )  = 9 0 ( z ) .  

The variable 77 has no physical significance, but it is readily shown that if Y(q, z )  satisfies 
the equation 

(25 )  
( ~ Q ~ + Q ~ ) w ~ ,  a ~ ~ = ~ ~ ~ o ~ ~ ~ + ~ s o  

w v ,  0) = 0 v > o  (26) 

2 2 1J2 where Q = (1 + k r )  ) subject to 

then q 0 ( z )  satisfies equation (21). Application of the Wiener-Hopf method (Williams 
1971) to equation (25) is rather easier than to the original equation; thus we introduce 
the Laplace transform 

m 

q(v,  p )  = io dz e-'*W(v, z ) .  

Note that in terms of @(v, p) we can write the emergent distribution as 

We now develop the solution of equation (25) through the Wiener-Hopf technique. 
After applying the transform (27) to equation (25), dividing by (vp+Q)Q and 
integrating over all 7, we obtain 

(29) R ( P I  V(P) = so + W ( P )  
where 

C 1 + ( p 2  - k2)1'2 
V ( p ) = l -  2 1 / 2  In( 1 - ( p 2 - k  2 ) 1 / 2 ) .  2 ( p 2 - k  ) 

Now the basic idea behind the Wiener-Hopf technique is to rearrange equation (29) 
so that each side is analytic in overlapping half-planes. As the equation stands, we 
observe that R (p) is analytic in Re( p) > 0, g( p) is analytic in Re( p) < (1 + k 2 ) 1 / 2  and 
V(p) is analytic in -(1+ k2)lI2 < Re(p) C (1 + k2)'I2. It is therefore necessary to 
decompose V(p) as follows. Define 

where f v  are the roots of 

~ ( p )  is now free from zeros in the strip -(1+ k2)lI2 < Re(p) < (1 + k2)1'2, and tends to 
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unity as Ip( + 00. These are the conditions necessary for the decomposition 

T ( P )  = T + ( P ) / T - ( P )  

where 

du In T(u). Inr , (p)=-\  - 
27~i  +p-im U - p  

1 +8+im 
(35) 

T&) are readily seen to be analytic in Re( p )  < p and Re( p )  > -p, respectively, where 
p c ( l + k 2 ) ” 2 .  

Now inserting T+ and T- into equation (29) and rearranging we get 

(So + c p g ( p ) )  p - ( 1  + k’)”’ R ( p )  p + (v’ + k’)”’ 
2 1 2 = -  2 1 / 2 *  (36) 

The right-hand side is analytic in Re@) > 0 and the left-hand side in Re(p) < -p. Thus 
each side is the analytic continuation of the other. The behaviour as IpI -* 00 gives the 
function by Liouville’s theorem. Since each side tends to a constant CO as IpI + CO we 
can write 

~ + ( p )  p - ( v 2 + k  1 ’ 7 4 ~ )  p + ( l + k  ) 

and 

R ( p )  p + ( v’ + k 2 )  ‘I2 
2 1/2 =Co. 

7 - b )  p + ( l + k  ) 

Hence from the definition of R (p) 

To obtain the value of CO we note that from the Tauberian theorem 

But clearly the value of *o(co) is given by equation (25) with no spatial variation, 
namely 

(41) Q2*(q, 00) = $c*o(ao) +$so. 
Hence 

( S o / k )  tan-’ k 
1 - ( c / k )  tan-’ k‘  *o(m) = 

From (39) 

C*O(A?) +so = CO; 
hence 

s o  
1 - ( c / k )  tan?’ k ’  CO = 

(43) 

(44) 
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Thus we have an explicit expressi.on for @o( p) which we write as 

H ( 2 )  has been defined in this way because it reduces to the conventional Chandrase- 
khar H function for k = 0 (Chandrasekhar 1960). It is possible to obtain some 
relationships for the function H ( 2 )  which simplify the analysis. These are 

H ( ~ o )  = [I - ( c / k )  tan-' k]-'12 (47) 

By allowing p + 0 or 00, a number of other useful relations are obtained. 
From equation (28) we see that 

A further quantity of interest is the collision density at the surface of the half-space. 
We note that 

- 1). 
=""( 1 

c [I - ( c / k )  tan-' kl"2 

To regain the spatial dependence in the x-y plane and the z direction it is necessary 
to invert the various transforms. Similarly, to regain the energy dependence it is 
necessary to invert in the s plane. We note, however, that to calculate energy 
deposition (Williams 1979b), W(x, y, z ) ,  we must obtain 

W(x, y, z )  = h,(l  -a) du e-u@o(u, x ,  y, z )  Jo* 
= $(l -a)Eodo(l, x ,  y ,  2). (52)  

Thus it is not necessary to invert in the s plane to obtain W. This does not apply, 
however, to the emergent distribution and since such an inversion involves considerable 
complexity (Williams 1979) we shall defer any further discussion of such distributions. 
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As an example of the spatial distribution in the x-y plane we examine the inversion 
of equation (51). Thus 

Because H ( m )  depends only on k, the integrals over kl and kZ can be reduced to 

W(X, Y, 0 )  = - a )  - iT Io dk kJo(kR){[l - ( c / k )  tan-' k]-"'- 1) (54) 

where R 2  = x 2  + yz. 
Numerical evaluation of this integral is not easy because of the oscillatory nature of 

the Bessel function and we therefore seek a better behaved form. Note that the 
quantity in curly brackets has the Fourier integral 

00 

F ( y )  = I dk eiky{[l -(c/k) tan-' k]-''2- 1). ( 5 5 )  

Now the integrand has branch points at k = * i and at k = * i v  where v is the root of 
equation (34). If in the complex k plane the branch points iv and i are joined by a cut 
and -iv and -i are similarly joined we may deform the contour along the real axis to 
obtain 

-m 

We may then regain the integrand in equation ( 5 5 )  by using the inverse transform, 
namely 

2 l  d t t  1 
ir 1" [ ( c / 2 t )  ln[(l+ t ) / ( l -  t ) ] -  11''' t 2 +  k2' 

{[l - ( c / k )  tan-' k]-1'2- 1) = - 

Inserting equation (57) back into equation (54) and using the relation 

= Ko(tR) 
O0 dk Wo(kR) Io t 2 +  k2 

(57) 

we find 

Recalling the scaling factor introduced in equation (10) we note that R should be 
replaced by R ( l  -A(l)) .  Further discussion of equation (59) will be given below. 

3.2. The searchlight problem 

Here we consider equation (16) with boundary condition (17). Converting the integro- 
differential equation to integral form, we find 

1 
PO 

&,,(s, kl, kz, z )  = -exp + i ( l  - - ~ ? $ " ~ ( k l  cos I,90+ kz sin I,90)1) 

m 

+;c jo dz' K(lz - z'l; k)&,(s, kl, kz, 2'). 
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The angular distribution at the surface is 

@s, -P, 4, ki, k2,O) 
m 

C 
= - I dz‘ &o(s, kl, k2, z’) 

4 w  0 

x exp( -<[l+ i( 1 - ,u2)1’2(kl cos $ + k2 sin $)I). (61) 

In order to solve equation (60) we follow Rybicki (1971) and note that in defining 

P 

the Green function G(z, zo) by 

we may write 
00 

&,,(s, kl, k2 ,  .)=‘I dzo G(z, zo)exp cos $o+k2sin 4011). 
Po 0 

(63) 

Clearly then the emergent distribution can be written as 

where f =  (1 -p2)1/2(kl cos $+ k2 sin $) and 
00 m 

&(PI, p2) = Io dz e-’*’ Io dzo e-P2LoG(z, zo).  

Thus if we can obtain the Green function G(z, zo) all other quantities of interest are 
available by quadrature. The surface distribution is also given from 

&s, ki, 
PO 

as may be seen by integrating equation (64) and using (65) and (62). 
To obtain the solution of equation (62) for G(z, zo) we introduce M ( z ,  zo) where 

(67) G(z, ZO) = S(Z -ZO)  + cM(z, ZO) 

which satisfies 
m 

M(z,  zo) = ic Io dz’ K(lz - 2’1; k)M(z’, zo) +$K(lz - zol; k). (68) 

We use the technique discussed in the last section by introducing q(7, z, zo) where 

and 
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subject to 

wq,o ,  zo) = 0 q >o. 
By using the double Laplace transform 

".OD "= 
i$(pl, p 2 )  = J dz e-'*' J dzo e-PZZOkf(z, to) 

0 0 

on equation (69) we find after some algebra 

R(pi ,  pz)V(Pi)= 1 +c(Pi +Pz)g(Pi, P Z )  
where 

R(p1, p z )  = 1 +C(Pl  +pz)i$(pr, P 2 )  

and 

(71) 

(73) 

(74) 

Using the Wiener-Hopf decomposition as discussed in 3 3.1 we obtain 

r1 + ~ ( P l + P z ) ~ ( P l , P Z ) l =  CoH(lIP1) (76) 

[ I +  C(P1 +pz)g~p1, P2)I = Co/H(-- l /P l ) .  (77) 

CO =H(l /pz)  (78) 

and 

Setting p i  = -p2  gives 

Inversion of this function leads directly to G(z, 20). We do note, however, that 

d(0, p2)  = lim pl&pl, p2)  

= H(1/P2). 

P l * a  

From these results we obtain 

and 

To obtain the complete solution in terms of x, y and U requires the inversion of the 
transforms: this is not an easy task and we defer discussion to a later paper. There seems 
to be no simple result as in the case of the line source. 
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It is worth pointing out that M ( r ,  0) is the solution obtained by Elliott for an 
isotropic source on the surface of a half-space. This solution is obtained readily from 
equations (79) and (80), namely 

l a p ,  0) = (H(l /p)  - W C .  (84) 

The inversion in the p plane is straightforward and is given by Elliott (1952, 1955). 
Some estimate of the collision density at the surface in the searchlight problem can 

be obtained by assuming that the beam is averaged over all directions, i.e. a distribution 
of beams all converging at the origin. Thus we must average over p o  and $0 as follows: 

It may be shown that this double integral reduces to a single one of the following form 
(see the Appendix): 

Unfortunately it is not possible to reduce this integral to a simpler form as was done in 
the constant source case. The nearest it is possible to get to equation (86) through 
equation (49) is 

1 / 2  

-- -2[ 1- ( l -z tan- lk)  k 1. C 

For k = 0 this reduces to the well known one-dimensional albedo result of 

A lower bound on the three-dimensional result can be obtained using the Schwarz 
inequality. Thus 

dw 1 w 1 lo lidk02w2H((1+w2k2)"2)~s 1+k2w2 io dwH((1+w2k2)1 

and so we may write 
1/2 k &,(s, k,O)==-[l-(l-~tan- '  2 k) 1- 

C 
(90) 

This may be inverted in the k plane by using the technique developed in equations 
(55)-(62). The result can be written as 

4. The H function 

The generalised H function is defined in 8 3.1 by equation (46) as a contour integral. It 
is also defined implicitly by the non-linear integral equations (48) and (49). The contour 
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integral can be transformed to a convenient form for computation and we find 

H ( $ ) = p + ( v 2 + k 2 ) 1 / 2 e x p ( ~ l o  w ( l + k  2 w 2 1 2  ) (wp+( l+w 2 k 2 1 2 )  ) ’ ) 
where 

A ( w ) = i c r w ( l - i c w  In[( l+w)/( l  --@)])-I 

dw tan-’ A(@) 1 p + (1 + k2)’ /*  
(92) 

Rybicki (1971) has also shown that by extending Chandrasekhar’s (1960) treatment 
H can be written as the infinite product 

where Y: are the roots of 

(94) 

with A i  = l /ki .  pi and wi  are the Gauss-Legendre quadrature weights and nodes. As 
n + 00, H , ( l / p )  tends to the exact value. Because of the analytical difficulties involved 
in inverting the k transforms, we shall obtain some approximate results with the first 
approximation to the H function, i.e. 

Solutions so obtained will show the typical form of the spatial dependence of the albedo 
and the energy deposition. 

5. Solutions using the approximate H function 

5.1. Line source problem 

There is a number of useful quantities that can be calculated for this problem. (1) The 
energy deposition at the surface 

m EoSo(1-a) 1 
- j dk Wo(kR)(H(m)-  1) 

2c 2 r  0 WtX, y ,  0 )  = 

which has already been obtained exactly in equation (59). (2) The complete energy 
deposition function 

1 m 

dk kJo(kR)- dp e”’(N(co)H(l/p) - l)/p. (97) 
EoSo(1-a) 1 

2c 2 r b  2r1 c 
W(X, y ,  2) = 

(3) The emergent angular distribution 

(4) The emergent current, which for unit incident current is also the albedo, 
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Let us consider first the energy deposition at the surface in the H1 approximation. 
Inserting equation (95) into equation (96) leads to 

03 

EoSo(1-a) - 1 dk kJo(kR)[ ( 3 + k 2  .) '"- 13. 
2c 2,J0 3(1 -c)+ k W(X, y, 0) = 

By casting the quantity in square brackets in the integrand of equation (100) into the 
form of a Fourier integral and deforming the contour we can write 

and hence 

For c = 1 and large R, equation (102) reduces to 

W ( X ,  y, 0) - J/3EoSo( 1 - a ) / 4 ~ R ,  

which also agrees with the exact result from equation (59). 
The emergent current J ( x ,  y, 0) is given by 

( 1 + w 'k 2)1/2 + w (3 + k2)'l2 

(1 + w 2k2)1/2 + w [3(1- C) + k ] 2 1/2* X 

Now it is possible to write the integrand in the form of a Fourier integral and hence 
express the integral in terms of K0(x) instead of J0(x) .  However, the complexity of the 
result adds nothing essential to our knowledge that equation (102) does not already tell 
us. We shall therefore omit these calculations and pass on to a study of the searchlight 
problem. 

5.2. Searchlight problem 

As in the line source problem, quantities of interest are as follows. (1) The surface 
collision density from equation (63), 

2 0 0  m 

@b, Y, 0) = (k) I-, dkl I-, dk2 exp(ik1x + ikzy) 

where 

Hence we may write, after changing variables (kl, k2) to (k, e), 
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where 

(2) The emergent surface current J ( x ,  y, 0) from equation (82) can also be written as 

do oH[w(l  +02k2)-’/2] 
x b l w ( l + i f ~ ) + p ~ ( l + w  2 k 2 ) 1/2 

or, more conveniently through equations (61) and (63), as 
m m 03 c 1 ’ “  

J ( x ,  y, 0) = - ( - ) J-, dk, I-, dk2 exp(ik1.x +ik2y) Jo dz I, dzo 
2No 27T. 

where 

Now the expression for @(x, y, 0) can be recast into a more convenient form if we note 
that, using the first approximation to Chandrasekhar’s H function, we get 

G(0, zo) = S(r0) + ((3 + k ’)‘j2 - [3( 1 - c )  + k2]1/2} exp{ - [3 (1 - c )  + k 2]1/2z0} 

and hence 

(1 10) 

x{(3 +k2)’/2-[3(1 - ~ ) + k ’ ] ~ / ~ }  exp{-[3(1 - C ) + ~ ~ ] ” ~ Z O }  (111) 

where we note that 

1 ”  
S(x)S(y) = ;Z;T lo dk Wo(k(x2+ y’)l/‘). 

But we may represent the quantity in the integrand of equation (111) as follows: 

{(3+k2)’/’-[3(1 -~)+k~]’ /~}exp{-[3(1  - c ) + k ’ ] ’ / ’ z ~ }  

+[t’-3(1 -c)]”’ C O S { Z O [ ~ ~ - ~ ( ~  -c)]’/’}} 

+ 2 I A{[ t2  - 3( 1 - c )I1/’ - ( t2  - 3 ) 9  cos{zo[t2 - 3 (1 - c)]1’2}. 
IT ~t + k  

(113) 
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Integrating over k leads to 

The integration over zo cannot be carried out analytically and further simplification of 
equation (114) is not possible. The case of normal incidence, when po = 1, leads to a 
much simpler result which can be expressed as 

The limiting case of c = 1 and large ( x 2  + Y*)’’~ becomes 

@(x,  y, O)-(&+ l)/27rR3 = O.870/?rR3, 

which is to be compared with the inequality (91), namely 

@(x, y, 0) P 0.577/wR3. (117) 

The emergent current J(x, y, 0) as given by equation (108) can be rearranged to the 
Hence the HI approximation obeys the exact inequality condition. 

following form: 

x ( ~ { ( 3 + k ~ ) ’ / ~ - [ 3 ( 1  -C)+/C’]’’~} exp{-[3(1 - c ) + ~ ~ ] ’ / ~ z o }  

+[(1 + ~ ~ k ~ ) ’ / ~ - w ( 3 +  k2)’/’] expi-(1 + o ~ ~ ’ ) ’ / ~ z o / ~ ] ) .  (118) 
To proceed, it is necessary to represent the quantity in round brackets in equation 

(118) as a Fourier integral. This can be done but, as in equation (104), the result does 
not warrant the effort in this preliminary discussion of three-dimensional effects. 

6. Numerical work and discussion 

The results in the previous section require rather lengthy numerical evaluation. It is not 
our intention to give a comprehensive survey in this respect but it will be useful to 
evaluate some typical surface distributions to illustrate the general trend of results. To 
do this we choose the energy deposition at the surface in the case of the line source and 
the surface collision density in the case of the searchlight problem. It is also helpful to 
assess the accuracy of the approximate H functions defined in § 4. This may be done 
rather easily through the line source problem for which a relatively simple exact 
solution for the surface energy deposition is available (see equation (59)). Table 1 
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Table 1. 

c = l  c = 0.9 c = 0.5 c = 0.2 

R Exact Approx. Exact Approx. Exact Approx. Exact Approx. 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
5.5 

5.276 
4.246 
3.652 
3.236 
2.919 
2.666 
2.455 
2.276 
2.123 
1.989 
1.504 
1.202 
0.996 
0.847 
0.733 
0.646 
0.575 
0.518 
0.472 

7.197 
5.599 
4.689 
4.062 
3.592 
3.222 
2.921 
2.670 
2.453 
2.274 
1.644 
1.275 
1.036 
0.869 
0.747 
0.654 
0.581 
0.522 
0.474 

3.125 
2.371 
1.938 
1.639 
1.414 
1.236 
1.090 
0.968 
0.865 
0.776 
0.473 
0.303 
0.200 
0.134 
0.0918 
0.0634 
0.0442 
0.0311 
0.0220 

5.374 
3.955 
3.152 
2.605 
2.200 
1.885 
1.632 
1.424 
1.251 
1.105 
0.628 
0.380 
0.239 
0.154 
0.102 
0.0685 
0.0466 
0.0321 
0.0222 

0.375 
0.272 
0.214 
0.174 
0.145 
0.122 
0.104 
0.0896 
0.0774 
0.0672 
0.0347 
0.0186 
0.0104 
5.902 (-3) 
3.382 (-3) 
1.956 (-3) 
1.139 (-3) 
6.672 (-4) 
3.926 (-4) 

2.485 
1.712 
1.286 
1.004 
0.801 
0.649 
0.532 
0.439 
0.365 
0.304 
0.130 
0.0585 
0.0272 
0.0129 
6.213 (-3) 
3.030 (-3) 
1.492 (-3) 
7.406 (-4) 
3.701 (-4) 

1.149 (-3) 
8.301 (-4) 
6.500 (-4) 
5.278 (-4) 
4.378 (-4) 
3.682 (-4) 
3.128 (-4) 
2.678 (-4) 
2.305 (-4) 
1.994 (-4) 
1.013 (-4) 
5.395 (-5) 
2.953 (-5) 
1.646 (-5) 
9.284 (-6) 
5.287 (-6) 
3.032 (-6) 
1.749 (-6) 
1.013 (-6) 

0.920 
0.615 
0.449 
0.341 
0.265 
0.210 
0.167 
0.135 
0.109 
0.0886 
0.0332 
0.0131 
5.328 (-3) 
2.206 (-3) 
9.255 (-4) 
3.923 (-4) 
1.675 (-4) 
7.201 (-5) 
3.111 ( - 5 )  

shows the values of the integral terms in equations (59)  and (102) for a range of values of 
R and c. From this table we may conclude that the first-order approximate H function 
becomes grossly inaccurate for c < 0.9 and for small R (< 1). Indeed, it is not difficult to 
show that as c -* 0 

I(equation (59))  - J2 exp(- I /C)K~(R)  

I(equation (1 02)) - ~ ~ T C K ~ (  Jk), 
thereby demonstrating the error very clearly. However, for c near unity the H I  
function provides a reasonable description at distances greater than a mean free path 
from the source. Such behaviour is, of course, typical of diffusion theory and, indeed, it 
is possible to demonstrate that H l ( Z )  has diffusion-like properties, although it is rather 
more accurate for Z < 1 than simple diffusion theory. The property that makes H l ( Z )  
poor, for problems involving Fourier spatial inversion, is the large-2 behaviour. It is 
therefore worthwhile seeking better approximations to the H function for large 2 or, 
for what is the same thing, H ( l / p )  for small p. We shall not pursue this aspect of the 
problem here, but refer the reader to Abu-Shumays (1966, 1967), who considers 
various ways of obtaining accurate but simple representations of H ( 2 ) .  

Finally, we examine the searchlight problem. The numerical work associated with 
this case is rather large and we shall defer a full survey to a future report. However, as a 
measure of the influence of incident angular directions of the beam, we compute the 
mean distance of travel in the x direction as a function of incident beam direction. Thus 

and 
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which  in terms of the Fourier  transform  can  be  written 

i a 
f ( ~ o ,  q0) = G(O, 0, 0) - w 1 ,  akl k2,0) (  k l=k2=0  - (120) 

From  equation (63) we therefore obtain 

(1 - p y 2  fr dzo zo e-”o/”oGo(O, ZO) 
PO I,” dzo  Go((), 20) 

f(P0, $0) = cos $0 (121) 

where the subscript zero on G indicates that k = 0.  But  because 
CO 

do(O, p )  = Elo( l/p) = I dzo e-p’oGo(O, ZO) 
0 

(1 - & y 2  
f(P0, $0) = cos $0 

PO -:;:;:)l p = l / p o  
(122) 

which,  after  using the H-function equations,  leads to 
1 

f (P0,  $0) = (1 - P Y 2  cos $o~cPoHo(Po) 
dp  P H O ~  1 Io (P +Po)2 * 

(123) 

The mean  distance in the y direction  follows if cos $o above is replaced by  sin $0. 

We  have  evaluated the integral  above using  Abu-Shumays’ H!? approximation  and 
our results are given  in table  2.  For the sake of example, we  give  only f (p0, O), i.e.  with 
the incident  beam in the x-z plane. The results  show  an  interesting  behaviour.  For 
normal  incidence the value of ff is zero, a fact  which  follows  from  symmetry. As the 

Table 2. 

k- 1 

~ 

0.9 0.5 

\ 

0 0 0 0 

0.01 
0.05 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
0.95 
0.97 
0.99 
1 

0.0285 
0.102 
0.167 
0.261 
0.325 
0.367 
0.390 
0.394 
0.379 
0.338 
0.259 
0.190 
0.149 
0.0872 
0 

0.0216 
0.0715 
0.111 
0.160 
0.187 
0.199 
0.202 
0.195 
0.180 
0.156 
0.115 
0.0831 
0.0649 
0.0378 
0 

0.0101 
0.0309 
0.0456 
0.0607 
0.0666 
0.0677 
0.0655 
0.0610 
0.0543 
0.0452 
0.0324 
0.0230 
0.0179 
0.0103 
0 
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beam moves away from the normal directions the mean distance of travel increases, 
passes through a maximum value of about 0.5 mean free paths at po=0.5 (60") and 
decreases to zero at grazing incidence. The latter behaviour is expected because at 
grazing incidence most of the particles that would normally travel long distances have 
leaked out and do not contribute to the weighting. Similar calculations may be 
performed for the second and higher moments. 

The main value of the above investigation is to throw light on the complex 
interaction between source direction and the spatial distribution of particles. For 
realistic scattering models and boundary conditions, resort is usually made to infinite 
medium spatial moment techniques. The present work provides an exact solution 
against which such approximations may be tested for accuracy and convergence. 
Although the present method can be extended to cascade problems, it is unlikely that 
realistic scattering models can be dealt with because of the restriction to an energy- 
independent mean free path. 

Appendix 

We wish to prove the identity 

where 

The left-hand side of equation (A.l) can be written as a contour integral where 
H(-l/p) is analytic in C: 

But from 

we can prove that 

1 
kr(l-pi)l'z) = 6' dw exp( -L(l + k 2 w 2 ) 1/2 ). jo dpo e-"'oJo( CL0 w 
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Hence 
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d w  1 

‘.ljcdPH(-j) 27ri Io p+(1+k2w2)”2/w 
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